Lynd, Nathaniel Ph.D.

Associate Professor
Laurence E. McMakin, Jr Centennial Fellowship in Chemical EngineeringHeadshot of Assistant Professor Nathaniel Lynd

 

Office: CPE 3.408 Mailing Address:
Phone: (512) 232-2534 The University of Texas at Austin
Fax: (512) 471-7060 McKetta Department of Chemical Engineering
Email: lynd@che.utexas.edu 200 E Dean Keeton St. Stop C0400
UT Mail: C0400 Austin, TX 78712-1589

Research Areas: Advanced Materials, Polymers & Nanotechnology, Biotechnology, Energy, and Environmental Engineering

Research Group Website

Research Presentation for Prospective Graduate Students

Educational qualifications

Postdoctoral Associate, Materials Research Laboratory, University of California, Santa Barbara  (2007-2010)
Ph.D., Materials Chemistry, University of Minnesota (2007)
B.S., Chemistry, Michigan State University (2002)

Research

We carry out fundamental and applied research in polymer science guided by the principles of simplicity, sustainability, and relevance to key technological challenges in chemical engineering for the 21st century in energy, environment, security, and materials for healthcare. Synthesis is the primary tool that we use to answer fundamental questions, and bring to bear in applied research projects. However, modeling efforts may be used to facilitate materials design, and to provide context for the interpretation of data. Particularly, we are engaged in research efforts that create and utilize new functional and reactive polyether materials and block polymers. Newer work is built on a foundation of novel techniques for advanced copolymer structure determination and detailed mechanistic understanding which facilitate the compositional control of structure-property-processing relationships. Currently, expression of our approach to polymer science is exercised in these broad areas:

  • New methods of synthesizing functional polyethers, and understanding copolymerization
  • Modeling, design, and synthesis of membranes for capture of carbon dioxide
  • Synthesis of degradable biomedical materials
  • Understanding ion transport in polymer electrolytes

Awards & Honors

University of Minnesota Doctoral Dissertation Fellowship (2006-2007)
Beaker and Bunsen Award, Graduate Research Symposium, University of Minnesota, Chemistry Dept. (2005)

Selected Publications

  • Synthetic strategy for preparing chiral double-semicrystalline polyether block copolymers. McGrath, A.; Rodriguez, C. G.; Kramer, E. J.; Hawker, C. J.; Lynd, N. A. Polym. Chem. 2014, accepted.
  • Numerical self-consistent field theory of multicomponent polymer blends in the Gibbs ensemble. Mester, Z.; Lynd, N. A.; Fredrickson, G. H. Soft Matter 2013, 9, 11288–11294.
  • Physiologically relevant, pH-responsive PEG-based block and statistical copolymers with N,N-diisopropyl-amine units. Lee, A.; Lundberg, P.; Klinger, D.; Lee, B. F.; Hawker, C. J.; Lynd, N. A. Polym. Chem. 2013, 4, 5735–5742.
  • pH-triggered self-assembly of biocompatible histamine-functional triblock copolymers. Lundberg, P.; Lynd, N. A.; Zhang, Y.; Zeng, X.; Krogstad, D. V.; Paffen, T.; Malkoch, M.; Nystrom, A. M.; Hawker, C. J. Soft Matter 2013, 9, 82–89.
  • Poly[(ethylene oxide)-co-(methylene ethylene oxide)]: A hydrolytically degradable poly(ethylene oxide) platform. Lundberg, P.; Lee, B. F.; van den Berg, S. A.; Pressly, E. D.; Lee, A.; Hawker, C. J.; Lynd, N. A. ACS Macro Lett. 2012, 1, 1240–1243.
  • Reactivity ratios and mechanistic insight for anionic ring-opening copolymerization of epoxides. Lee, B. F.; Wolffs, M.; Delaney, K. T.; Sprafke, J.; Leibfarth, F. A.; Hawker, C. J.; Lynd, N. A. Macromolecules 2012, 45, 3722–3731.
Posted on: